Scientists from A*STAR’s Institute of Molecular and Cell Biology (IMCB), have identified hundreds of novel genes in the zebrafish that could be functionally identical to the human genes required for forming motile cilia, hair-like structures on the surface of airway cells, a statement said.
These are required for removing dust and pathogens from the human airway.
The study showed that the loss of these genes is linked to development of defective motile cilia, which could be the cause of some respiratory diseases.
Primary Ciliary Dyskinesia (PCD) is a rare genetic disorder which results in defective motile cilia within the human airway.
Defective motile cilia cannot function properly to remove dust and bacteria from the lungs, leading to a range of respiratory problems, including chronic lung infections such as bronchitis and pneumonia, and in more severe cases, causes long term damage to the airway.
Reported recently as a cover article in Development, a leading research journal in developmental biology, the IMCB research team identified hundreds of novel genes that are associated with the development of motile cilia via genetic screening in zebrafish.
Out of nearly 600 genes found in the zebrafish, the researchers identified almost all of the 26 known genes responsible for PCD, implying that many more could be linked to the disorder.
Further studies on this discovery can yield useful information to pinpoint the genes associated with PCD which could be valuable markers for the accurate diagnosis of PCD and other causes for defective motile cilia via genetic testing, the statement said.
Dr Sudipto Roy, IMCB’s Senior Principal Investigator and the lead scientist for the study, said that there was no cure for PCD and that doctors could only prescribe aggressive treatments to slow the progress of airway damage and address the respiratory issues resulting from PCD.
It is therefore important to identify the genes responsible in a precise manner and diagnose the condition early.
“Our collection of genes will be invaluable for understanding how cilia are made and what cause them to be defective. They are important clues for understanding cilia-related diseases, and to develop future treatments,” he said in the statement.
— BERNAMA
TNS TNS FR